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Abstract— Humans are known to manage postural move-
ments in a very elegant manner. In the task of standing up
from a chair, a humanoid robot can benefit from the variability
of human demonstrations. In this paper we propose a novel
method for humanoid robots to imitate a dynamic postural
movement demonstrated by humans. Since the kinematics of
human participants and the humanoid robot used in this
experiment are different, we solve the correspondence problem
by making comparisons in a common reward space defined by
a multimodal reward function composed of balance and effort
terms. We fitted a fully actuated triple inverted pendulum to
model both human and robot. We used Differential Evolution
to find the optimal articular trajectory that minimizes the
Kullback-Leibler difference between the human’s and robot’s
reward profile subject to constraints.

I. INTRODUCTION

Moving from an unstable posture to a stable one, like
standing up from a chair, is very often elegantly managed by
humans. However, this poses a complex computational prob-
lem to humanoid robots that conservatively try to maintain
the Zero Moment Point (ZMP) within the support polygon.
Learning from demonstration (LfD) is a straightforward way
to reconcile this difference. Humans have a high predisposi-
tion to learn from demonstration. Some researchers have pro-
posed to denominate our species to be homo imitans, which
means “man who imitates” [1]. Besides, some researchers
defend that LfD is the best way to obtain complex behaviors
[2]. Robot LfD follows a set of statements [3]:

LfD1: Determine what to imitate, inferring the goal.
LfD2: Establish a metric for imitation.
LfD3: Mapping between dissimilar bodies.
LfD4: Compute the control commands to perform the

imitation.
One of the key questions in LfD is what has been called

what to imitate or the correspondence problem. It has been
demonstrated that when an individual imitates another indi-
vidual, he does not mimic the same movement or perform the
same muscular control orders. On the contrary, he imitates
the goal or strategy of the action [4].

Following that idea [4], we propose to use the reward as
the goal (LfD1) using a multimodal reward profile, composed
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of ZMP and torque terms, as the metric of imitation (LfD2).
We modelled (LfD3) both human and humanoid as a simple
Fully Actuated Triple Inverted Pendulum (FATIP). Finally,
we computed an articular trajectory using a PD controller
(LfD4), which minimized the Kullback-Liebler difference
between human and humanoid reward profiles. We selected
Differential Evolution (DE) developed by [5], as the opti-
mizer algorithm.

Different approaches have been presented to address this
problem. In [6] a humanoid robot stands up from a chair
based on human demonstrations. A three link simulated
pendulum that learns to stand up using a hierarchical re-
inforcement learning method has been presented in [7].

A similar approach to ours, which combines LfD and
Reinforcement Learning (RL), teach a robot a pick and
place task [8]. The main differences are that they teach the
robot by kinesthetic demonstrations which are encoded via
Gaussian Mixtures Models (GMM), so they skip the problem
of mapping bodies. Also, they use RL to recompute the
trajectories if a unplanned obstacle is found.

Many works includes ZMP, torques, joint limits or energy
as elements of RL based movements [9], [10]. The main
difference with our proposal is the use of the reward as a
common basis of comparison between the human and the
robot.

Our work is inspired in the work of [11]. The authors
define three metrics to solve the correspondence problem to
address the problem of mapping actions between the teacher
and the learner even if they have different embodiments. One
of this metrics, called trajectory level, considers the overall
goal. In this work, they plan a set of sub-states that has to
be reached through optimization, in our case, instead of sub-
states we use a reward profile.

A recent approach [12] address how to obtain a model
of the locomotion behavior that can be transferred from a
human demonstrator to a robot, what is called inverse optimal
control. The authors select an objective function which is a
combination of position, velocity and other features of the
movement as the metrics, multiplied by a set of parameters
that are obtained through optimization. This model can be
transferred to the robot to produce a similar behavior. The
difference with our approach is the selection of the metric
to optimize, that in our case is a combination of a reward
function of stability and effort. This approach transfers the
goal of the movement even though the human and the robot’s
embodiment are not the same and it can even produce
drastically different trajectories, while maintaining the same
behavior.
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Fig. 1. (a) Snapshot of the high frequency camera of the MOCAP system
with a subject seated in a chair and markers in his body. Over him is painted
a triple inverted pendulum. (b) A simulation of the humanoid HOAP-3
seated in a chair and the inverted triple pendulum. (c) A triple inverted
pendulum in the sagittal plane.

In a previous work [13], we created a method to evaluate
and improve the expertise of a group of machine operators.
We define a task metric as a combination of several behav-
iors. The best individual to perform the task is imitated by
the other individuals to enhance the task result.

The rest of the paper is organized as follows. Section II
explains how the human participant data has been collected
and how every human and the robot are modelled as a
FATIP. Section III presents the equations of motion and
the state space representation of the triple pendulum. In
section IV, the proposed algorithm is studied. In section V
experimental results are presented and discussed, and finally,
the conclusions are stated in section VI.

II. DATA COLLECTING AND MODELING

We collected data from 8 human participants of age
between 20 to 40 years, weights between 60 and 99 Kg,
and heights between 1.68 and 1.88 m. The experimental
protocol was approved by the ethics committee on using
human participants in experiments of Kingston University
of London. Every participant performed 20 consecutive
demonstrations of standing up from a chair. A 6-camera
Oqus motion capturing system made by Qualisys, Sweden,
collected position data of 21 markers attached to the subject’s
body at 240Hz sampling rate.

The markers were distributed as follows: first and fifth
metatarsi, lateral malleolus (ankle), lateral epicondyle of the
femur (knee), greater trochanter (hip), anterior superior iliac
spine (ASIS), posterior superior iliac spine (PSIS), seventh
cervical vertebra (top of spine), acromion process (shoulder),
lateral epicondyle of the humerus (elbow) and lateral styloid
process (wrist). All markers are bilateral, they are located on
both sides of the body, except the seventh cervical vertebra.

Both robot and human were modeled as a FATIP tak-
ing into account only the sagittal plane, since there is no
movement in the horizontal or frontal plane when the human
stands up. The model selected can not cover multiple contact
or floating base effects, however, since standing up is a
simple movement, we chose it for simplicity. For a more

complete framework for contact modeling in humanoids
please refer to [14].

Fig. 1(a) shows a snapshot of the high frequency camera
of the MOCAP system, where a human is seated on a
chair with all the markers on his body. Over him a triple
pendulum is painted. In Fig. 1(b) we show the position of
the triple pendulum over the humanoid robot. The center of
mass of every pendulum is located at the tip of every link
whose masses are negligible. The first joint of the pendulum
corresponds to the ankle joint in both human and humanoid,
the second joint of the pendulum corresponds to the knee
and the third one corresponds to the hip.

To calculate the masses of the pendulum for the human
we took into account the total weight of the subject and
a estimation of the mean distribution of human body parts
presented in [15]. The length of the pendulum links is
estimated using the distance between markers. For the first
link, the length is the distance between ankle and knee, for
the second one, the distance between knee and hip and for
the third one, the distance between the hip and the middle
of the chest. A pendulum is computed for every subject so
we have obtained a total of 8 FATIP and 20 trajectories of
standing up for every pendulum.

The robot used for the experiments is the Fujitsu HOAP-
3 humanoid. To identify the triple pendulum parameters of
the robot, i.e. the length and mass of every link, we used
DE and data of the robot sensors like in [16]. We manually
created a trajectory for the robot and obtained the ZMP
measurement of the FSR sensors in the feet. Later, we used
the ZMP multibody equation (1) to obtain the theoretical
ZMP trajectory. The multibody ZMP equation in the sagittal
plane is

xZMP =

n∑
i=1

mixi(z̈i + g)−
n∑
i=1

miẍizi −
n∑
i=1

Iiyαiy

n∑
i=1

mi(z̈i + g)
(1)

where mi is the mass of every link, xi, zi, ẍi, z̈i are the
position and acceleration of every joint, Iiy is the inertia
and αiy is the angular acceleration (see Fig. 1(c)).

To identify the system we optimized the pendulum pa-
rameters minimizing the quadratic difference between the
theoretical ZMP and the real ZMP. The results are shown in
the table I.

TABLE I
TRIPLE PENDULUM IDENTIFICATION PARAMETERS

Mass (Kg) Lenght (m)
Link 1 0.505 0.167
Link 2 0.500 0.260
Link 3 3.900 0.264

III. FULLY ACTUATED TRIPLE INVERTED PENDULUM
MODEL

The equation of motion for the FATIP (see Fig. 1(c)) can
be obtained using the lagrangian equation:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= τi (2)
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where the Lagrangian is the difference between the kinetic
and potential energy given by

L = T − V (3)

V = m1gz1 +m2gz2 +m3gz3 (4)

T =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
m3v

2
3 (5)

where v1, v2 and v3 are the speed of the centers of mass of
the inverted pendulum and v2i = ẋ2i + ż2i . Substituting (3),
(4) and (5) into (2) we obtain the equation of motion of the
triple pendulum, whose compact form is stated as follows

τ = H(q)q̈+C(q, q̇)q̇+G(q) (6)

where H ∈ R3×3 is the inertia matrix, C ∈ R3×3 is the
matrix of centrifugal and coriolis forces and G ∈ R3×1 is
the gravity matrix. In the Appendix, the obtantion of (6) is
detailed.

A. State space representation of the triple pendulum

The FATIP can be expressed as a dynamical system in the
standard form:

ẋ = Ax+Bu (7)

y = Cx (8)

where x is the state vector, u is the control vector and y is
the output vector.

To obtain the representation of the triple pendulum
system let us define the following state variables: x =
[q1, q̇1, q2, q̇2, q3, q̇3]

T .
Taking this into account, and reordering (6), the matrices

A, B and C can be obtained given

ẋ1 = x2, ẋ3 = x4, ẋ5 = x6 (9) ẋ2

ẋ4

ẋ6

 = f̂(x1,x2,x3,x4,x5,x6) (10)

where f̂ contains nonlinear terms of the state variables.
To get rid of the nonlinear terms, we linearized over

the point of maximum acceleration, xi0, using a Taylor
expansion given by

˙̃x = Ax̃+Bũ (11)

where

A =
∂f

∂x

∣∣∣
x = x0
u = u0

; B =
∂f

∂u

∣∣∣
x = x0
u = u0

(12)

and x̃i = xi − xi0, ũi = ui − ui0.

IV. POSTURAL LEARNING FROM DEMONSTRATION

To perform the robot standing up and solve the corre-
spondence problem, we cannot compare directly the position
or the torques of the human, since in this case the anthro-
pomorphic difference between them is significant. Instead,
we define a reward function as a metrics that evaluates the
optimality of the overall goal, similarly to the trajectory level
of [11].

In this study we chose balance and effort as elements of
the reward vector because of the nature of the control task.
A robot moving from a seated posture to a stable upright
posture, has to transit through meta-stable postures in the
sense that the ZMP lies inside of the support polygon most
of the time. The robot will not be able to achieve the stable
upright posture if it does not bring it to a stand-still posture
inside the support polygon before it tips backward. Due to
this reason, most conventional ZMP based controllers would
generate excessive joint torques to accelerate the body to
the upright posture. This can even lead to an overshoot of
the ZMP beyond the support polygon leading to tipping
forward. To avoid this, the controllers would have to generate
excessive counter torques to pull the ZMP back within the
support polygon.

A. Postural control and trajectory generation

The desired joint trajectory of the robot is a cubic spline,
which is defined as a piecewise polynomial fitted to a set of
via points

(t0, q
∗
0), (t1, q

∗
1)...(tk, q

∗
k) (13)

where q∗i ∈ RN is the joint via points at time ti ∈ R.
Given these via points, there is a cubic trajectory that

passes through these points and satisfy a smooth criteria,
given by

qi(t) = ai(t− ti)3 + bi(t− ti)2 + ci(t− ti) + di (14)

where ai, bi, ci, di are the polynomial coefficients optimized.
The complete joint trajectory q(t) ∈ RN is a concatenation
of (14) over the time intervals:

q(t) =


q0(t) if t0 ≤ t < t1
...
qk(t) if tk ≤ t < tk+1

(15)

We defined a set of two static postures, one with the robot
sitting down qi(t = 0) and another with the robot standing
up qi(t = tf ). The initial and final postures are arbitrary, the
initial posture depends on the height of the chair. We could
choose different heights with the restriction that the torque
do not pass the maximum value allowed for the motors.

The desired joint trajectory is computed as a cubic spline
(15) with an initial, middle and final point. The initial and
final points correspond to the static postures and the middle
point is obtained using DE.
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B. Reward function of balance and effort

We defined a reward function for both human and robot
and expressed it in terms of balance and effort. The check
the balance, we used the ZMP (1) and to check the effort,
the torque (6) of the three joints. We selected a gaussian-like
function as a base function (16) to evaluate the behavior in
the reward space.

f(χ, t) = exp
−36(χ(t)− θmed)2

2(θmax − θmin)2
(16)

This function is used to obtain the ZMP reward profile
rzmp(t) = f(ZMP, t) and the torque reward profile rτi(t) =
f(τi, t). θj represents the ZMP minimum, medium and
maximum in the case of the ZMP reward function and similar
with the torque reward function. The torque is normalized to
compute the reward. For simplification, we do not taken into
account the contact when the human is seated.

The support polygon for the human is the length of the
feet of every subject, that we estimated using the MOCAP
system. For the torque, we used (6) to obtain the maximum
and minimum torque for the three joints. The support poly-
gon and torque for the robot is obtained using the manual
provided by the manufacturer.

The total reward function is the sum of balance and effort
functions, which is given by

r(t) = wzmp(t)rzmp(t) + wτ (t)

∑3
i=1 rτi(t)

3
(17)

where wi(t) are weights to modulate the importance of
balance vs effort.

We defined the fitness function (18) to minimize, as the
summatory in every time step k of the Kullback-Liebler
divergence between the mean reward profile of all the human
participants p(i) and the reward profile of the robot q(i).
Furthermore, we added as a constraints (19) the ZMP limits,
torque limits and joint limits.

min g =
∑
k

∑
i

p(i)log
p(i)

q(i)
(18)

subject to
θmin ≤ θ ≤ θmax (19)

where θ represents ZMP, torque or joint position.
Achieving stability without excessively straining the joint

actuators becomes an interesting control feature we wish
to acquire from human demonstrators. It was interesting to
note from our human demonstrations, initially the ZMP stays
outside the shape of the feet and moves to the center when
the movement is finished. Furthermore, the torques tend to
decrease, specially in the second joint which supports the
weight of the upper body, until they became minimum in
the upright position. The selection of the base function (16)
implies the former situation. When the ZMP is in the middle
of the feet and when the torques are zero, the reward is
maximum, otherwise the reward descends until zero when
the ZMP is outside the limits or the torque surpass the
allowed maximum torques. Then the reward function (17),
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Fig. 2. Computed FATIP ZMP and real robot ZMP. Limits in dotted pink.
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Fig. 3. In blue the ZMP of the 20 trials of a human subject of 67.8Kg
and 1.71m. In red the mean ZMP and the standard deviation. In dotted red
the mean ZMP limits.

acts as an attractor from a initial static posture to the final
static posture and makes the movement possible, imitating
the human demonstrations, and at the same time, solving the
correspondence problem.

V. EXPERIMENTAL RESULTS

The experimental results show that the output trajectory is
completely different to that of the human participants, which
makes sense. It is obvious that a robot of 60 cm does not
stand-up using the same trajectory as a human of 1,80 cm.
This result prove our statement and that of [11] and some
neuroscientists like [4], that suggest that to imitate a behavior
what should be copied is the overall goal.

Fig. 2 shows the theoretical ZMP, calculated using (1) and
the real ZMP measured from the robot feet FSR sensors. As it
can be seen, initially the ZMP is outside the stability region.
This happens because at that time the robot is slightly leaned
on the chair and as explained before only contact with the
floor is taken into account. In Fig. 3 the ZMP trajectory of
one of the human participant is shown. As it can be seen,
the ZMP of the human and that of the robot is not the same.

Fig. 4 plots the torques of the robot’s pendulum. As it can
be seen, they are between the limits. It is remarkable that
the second joint has the higher value, this is due it supports
the heaviest part of the robot.

In Fig. 5, the calculated rewards for all humans and
robot are shown. For every human and every stand up
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demonstration, a reward profile was computed. The mean
reward of every human is plotted in blue. The mean of all the
8 mean rewards is plotted in red with the standard deviation.
This is the value used in (18) to obtain the desired robot
trajectory. Finally, the dotted black line represents the reward
profile of the robot.

We implemented our method in the humanoid robot
HOAP-3. In Fig. 6 a snapshots of the robot performance
are shown. As it can be observed, the robot starts seated in
the chair and stands up maintaining the balance in a very
soft way. It is clear that the robot does not start with the
knee joint at 90 degrees as the human. This is due to the
robot’s torque limits that are constrained to not be surpassed
(see (18) and (19)).

A. Discussion and contributions

The main contribution of this work is the solution of the
correspondence problem in the reward space. The transfer of
behavior between human and robot is based on the reward
obtained when standing up, and is based on the combination
of balance and effort. Our method also takes into account the
ZMP, torque, and joint limits of the robot, so the trajectory
is always executable.

The reward profile is defined as the action goal and may
be presented as an evaluation of the behavior success. A
successful imitation of the human behavior can be measured
taking into account the degree of similarity with the reward

  

Fig. 6. Snapshots of the experiments of the HOAP-3 humanoid standing
up.

profile of the robot.
The humanoid learns how to perform smooth and stable

standing up movements based on human demonstrations,
even with a clear mismatch in the embodiment. This is
possible because the robot does not simply imitate the human
movement, rather learns an optimal behavior subject to a set
of internal constraints, which in fact is completely different
from the human movement.

Here, we address the correspondence problem by com-
paring the human demonstrations and robotic behaviors in
a reward space defined by a multi-objective reward vec-
tor. However, the specific reward functions we have cho-
sen, stability and effort, may neglect other subtle criteria
used by human demonstrators. Techniques such as inverse-
reinforcement based learning and genetic programming can
be used to discover the hidden reward functions in the future.
Though such exhaustive exploration for reward functions
is beyond the scope of this paper, open exploration for a
detailed reward vector will further improve the choices for
a robot to innovate diverse skills by selectively focusing on
alternative reward functions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel method where a hu-
manoid robot learns to stand up from human demonstrations.
The human and the robot are very different in terms of height
and weight. However, since they are anthropomorphically
similar, their behavior must be the same even if they do
not perform the same movement. Recent advances in neuro-
science [4] suggest that what humans copy when imitating
is the overall goal of the behavior, not just the trajectories
of the movement.

In that sense, we propose a method where a multi-objective
reward function is used to transfer a behavior between a
human and a robot. This reward function is the basis of
comparison between them. We used Differential Evolution
to optimize the desired robot trajectory, which minimizes
the Kullback-Liebler difference between the human reward
and the robot reward, while taking into account the ZMP,
torque and joint limit constraint. We demonstrated that the
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answer to what to imitate question [3] can be to imitate the
overall goal of the behavior, defined as a reward profile. The
algorithm was tested in the humanoid HOAP-3.

In future works we will address the generalization of our
method to other behaviors as opening a door or walking. In
these case the reward function has to be selected carefully,
or could even be directly learned form the human demon-
strations.

APPENDIX
FULLY ACTUATED TRIPLE INVERTED PENDULUM

EQUATIONS

Let us define the position and velocity of every link (see
Fig. 1(c)).

x1 = l1 sin q1, ẋ1 = l1 cos q1q̇1 (20)

z1 = l1 cos q1, ż1 = −l1 sin q1q̇1 (21)

x2 = l1 sin q1 + l2 sin q2 (22)

ẋ2 = l1 cos q1q̇1 + l2 cos q2q̇2 (23)

z2 = l1 cos q1 + l2 cos q2 (24)

ż2 = −l1 sin q1q̇1 − l2 sin q2q̇2 (25)

x3 = l1 sin q1 + l2 sin q2 + l3 sin q3 (26)

ẋ3 = l1 cos q1q̇1 + l2 cos q2q̇2 + l3 cos q3q̇3 (27)

z3 = l1 cos q1 + l2 cos q2 + l3 cos q3 (28)

ż3 = −l1 sin q1q̇1 − l2 sin q2q̇2 − l3 sin q3q̇3 (29)

The components of every matrix in (6) can be expressed
as:  τ1

τ2
τ3

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 q̈1
q̈2
q̈3

+ (30)

+

 0 c12 c13
c21 0 c23
c31 c32 0

 q̇21
q̇22
q̇23

+

 g1
g2
g3

 (31)

h11 = l1
2 (m1 +m2 +m3) (32)

h22 = l2
2 (m2 +m3) (33)

h33 = l3
2m3 (34)

h12 = h21 = (m2 +m3)l1l2cos(q1 − q2) (35)

h13 = h31 = m3l1l3cos(q1 − q3) (36)

h23 = h32 = m3l2l3cos(q2 − q3) (37)

c12 = −c21 = −(m2 +m3)l1l2sin(q2 − q1) (38)

c13 = −c31 = −m3l1l3sin(q3 − q1) (39)

c23 = −c32 = −m3l2l3sin(q3 − q2) (40)

g1 = −gl1 (m1 +m2 +m3) sin (q1) (41)

g2 = −gl2 (m2 +m3) sin (q2) (42)

g3 = −gl3m3 sin (q3) (43)
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