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This paper addresses the problem of robust control of a humanoid robot 

modeled as a triple inverted pendulum. Reduced models have the ad-

vantage of simplifying the complexity of the equations relating the varia-

bles involved in the dynamics of the robot, but have the drawback of mis-

matching with respect to the real complete model. Many researchers have 

proposed different control strategies for reduced models, but still an im-

portant effort is needed to be devoted to the problem of how this simplifi-

cation affects the control performance. In this paper, we propose the use of 

a fractional order controller for the control of the humanoid, which is ro-

bust to changes in the model parameters. In particular, we have modeled a 

humanoid robot as an inverted triple pendulum, comparing the perfor-

mance of a classical PID controller with a fractional order one when the 

pendulum masses change. We have tuned the controller parameters using 

differential evolution. The results are discussed in this paper, highlighting 

the robust performance obtained with the fractional order controller.  

1 Introduction 

In recent years there have been a strong discussion between researchers on 

favor to use mass distributed models to model a humanoid robot, where the 

mass and inertia of every link is known, and those who prefer to use a 

simplified or concentrated mass model, where all robot dynamics are sim-

plified and concentrated in the center of gravity (Arbulú, 2009). 



Those who prefer the representation of a complete dynamic representa-

tion defends that it allows more complex behavior, the model is more ac-

curate and there is no need of complex control methods. In (Khatib, 2008) 

the authors perform a whole-body motion hierarchically dividing the con-

trol in tasks. Arbulu et al. (Arbulú, 2010) used Lie algebra to obtain the 

humanoid whole-body dynamics and reduce the computation time. In 

(Kajita, 2003) humanoid motion is accomplish controlling the momentum 

of a complete body model.  

 

Many researchers make use of reduced dynamic models to control hu-

manoids, some examples are the 2D and 3D linear inverted pendulum 

(LIPM) (Kajita, 1991; Kajita, 2001), cart-table (Kajita, 2003) or the angu-

lar momentum pendulum model (Komura, 2005).  

 

A reduced model does not cover all dynamic behavior and non lineari-

ties of the real model, however, they are commonly used and many re-

searchers have obtained good experimental results. In (Kaynov, 2009) a 

humanoid robot is modeled as a double inverted pendulum and a stabilizer 

is studied. (Mistry, 2010) models a humanoid as an inverted pendulum of 

five links and a stand up task is performed. Other examples can be found 

in (Kim, 2007). In (Pan, 2004) a triple inverted pendulum is controlled 

using an evolutionary approach. Another examples of triple pendulum con-

trol use H∞ (Tsachouridis, 1999) or fuzzy methods (Xiaofeng, 2009). 

 

On the other hand, nowadays, the better understanding of the potential 

of fractional calculus and the increasing number of studies related to the 

applications of fractional order controllers in many areas of science and 

engineering have led to the importance of studying aspects such as the 

analysis, design, tuning and implementation of these controllers. 

 

Fractional calculus (FC) is a generalization of the integration and differ-

entiation to the non-integer (fractional) order fundamental operator D, 

where a and t are the limits and α (α ∈ ℝ) is the order of the operation. 

Among many different definitions, two commonly used for the general 

fractional integro-differential operation are the Grünwald-Letnikov (GL) 

definition and the Riemann-Liouville (RL) definition (Podlubny, 1999). 

The GL definition is  
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where [∙] means the integer part, while the RL definition is  

 
1

1 d ( )
D ( ) d

( ) d ( )

n
t

a t n na

f
f t

n t t








   

    (2) 

 

for (n-1 < α < n) and where Γ(∙)  is the Euler's gamma function. 

 

For convenience, Laplace domain notion is commonly used to describe 

the fractional integro-differential operation. The Laplace transform of the 

RL fractional derivative/integral (2) under zero initial conditions for order 

α (0 < α < 1) is given by  

 

 £{ D ( )} ( )a t f t s F s    (3) 

 

In theory, control systems can include both the fractional order dynamic  

system to be controlled and the fractional order controller. However, in 

control practice, more common is to consider the fractional order control-

ler. This is due to the fact that the system model may have been already 

obtained as an integer order model in the classical sense. 

 

In this line, the objective of this work is to apply a fractional order con-

trol (FOC) strategy for the control of a humanoid robot modeled as a triple 

inverted pendulum, introducing a fractional order controller to improve the 

system performance and overtake the mismatches produced between the 

simplified and real models of the robot.  

 

To test the robustness of our controller, we have compared a classical 

PID controller with a fractional controller when the humanoid follows a 

trajectory of standing up from a chair. We have overloaded the system 

adding 1 Kg. to every pendulum link, with the objective of evaluating the 

robot performance when there is a change in the mass of the model. The 

controller gains have been optimized with Differential Evolution. 

 

The rest of the paper is organized as follows. Section II presents the 

simplified model of the HOAP humanoid robot as a triple inverted pendu-



lum, together with its state space representation. Section III gives a brief 

review on fractional order controllers and their implementation. Section IV 

introduces the differential evolution method used here to tune the different 

controllers proposed. In Section V, the simulation results are given and 

discussed, concluding in Section VI with the main conclusions and future 

works. 

2 Reduced robot model 

In a very simplified way, a humanoid robot can be dynamically modeled 

as a triple inverted pendulum. As it can be seen in Fig. 1 (Left), we have 

modeled the HOAP humanoid robot as a triple pendulum, where the ankle 

joint of the robot corresponds to the first pendulum joint, the knee joint 

corresponds to the second one, and the hip joint corresponds to the third 

one (see Fig. 1 (Right)). 

 
Fig. 1: Left: Reduced model of HOAP humanoid robot sited on a chair. 

The proposed model is a two dimensional triple inverted pendulum with 

massless links and the center of mass at the tip of the pendulum. Right: 

Triple inverted pendulum with masses, lengths, torques and positions. 

 

 

The similarity is stated under the assumptions that the pendulum masses 

are concentrated at the tip of every link and the link masses are negligible. 

The control action that allows every mass mi to move a position qi is the 

torque τi. 



Since the task we wanted to simulate is a robot standing up from a chair, 

we have chosen a triple pendulum to model the humanoid. The reason why 

we decided this is because there is a direct mapping between the pendulum 

joints and the joints needed for the robot to stand up. It is a good trade be-

tween selecting a simple inverted pendulum model and a complete model. 

2.1 Triple pendulum equations 

To obtain the triple pendulum equations let us define the position and 

velocity of every link. 

 

 1 1 1 1 1 1 1sin , cosx l q x l q q   (4) 

 1 1 1 1 1 1 1cos , sinz l q z l q q    (5) 

 2 1 1 2 2sin sinx l q l q   (6) 

 2 1 1 1 2 2 2cos cosx l q q l q q   (7) 

 2 1 1 2 2cos cosz l q l q   (8) 

 2 1 1 1 2 2 2sin sinz l q q l q q    (9) 

 3 1 1 2 2 3 3sin sin sinx l q l q l q    (10) 

 3 1 1 1 2 2 2 3 3 3cos cos cosx l q q l q q l q q    (11) 

 3 1 1 2 2 3 3cos cos cosz l q l q l q    (12) 

 3 1 1 1 2 2 2 3 3 3sin sin sinz l q q l q q l q q     (13) 

 

Articulated torques can be derived using the lagrangian equation: 
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where the Lagrangian is the difference between kinetic and potential en-

ergy. 

    (15) 

 1 1 2 2 3 3m gz m gz m gz    (16) 
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where v1, v2 and v3 are the speed of the centers of mass of the inverted 

pendulum with 
2 2 2

i i iv x z  . Substituting (4, …, 13) into (16) and (17) 

and then into (15), we obtain the equation of motion of the triple pendu-

lum, whose compact form is stated as follows. 

 

 ( ) ( , ) ( )   H q q C q q q G q  (18) 

 

where H ∈ ℝ3x3
 is the inertia matrix, C ∈ ℝ3x3

 is the matrix of centrifu-

gal and coriolis forces and G ∈ ℝ3x1
 is the gravity matrix. The components 

of every matrix can be expressed as: 
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  2

11 1 1 2 3h l m m m    (20) 

  2

22 2 2 3h l m m   (21) 

 
2

33 3 3h l m  (22) 

 12 21 2 3 1 2 1 2( ) ( )h h m m l l cos q q     (23) 

 13 31 3 1 3 1 3( )h h m l l cos q q    (24) 

 23 32 3 2 3 2 3( )h h m l l cos q q    (25) 

 12 21 2 3 1 2 2 1( ) ( )c c m m l l sin q q       (26) 

 13 31 3 1 3 3 1( )c c m l l sin q q      (27) 

 23 32 3 2 3 3 2( )c c m l l sin q q      (28) 

    1 1 1 2 3 1sing gl m m m q     (29) 

    2 2 2 3 2sing gl m m q    (30) 

  3 3 3 3sing gl m q   (31) 

  

 



2.2 State space representation of the triple pendulum 

The inverted triple pendulum can be expressed as a dynamical system in 

the standard form: 

 ,    X AX BU Y CX    (32) 

 

where X is the state vector, U is the control vector and Y is the output 

vector. To obtain the representation of the triple pendulum system let us 

define the following state variables: 1 1 2 1 3 2 4 2, , , ,X q X q X q X q     

5 3 6 3,X q X q   

 

Taking this into account, and reordering (18), the matrices A, B and C 

can be obtained knowing that: 

 

 1 2 3 4 5 6, ,X X X X X X    (33) 
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Where f̂  contains nonlinear terms of the state variables. 

 

To avoid the nonlinear terms, we have linearized over 0iX  using a Tay-

lor expansion:  

 X AX BU   (35) 
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 and 0i i iX X X  . 

 

Since the desired trajectory has a wide variation, we have selected three 

regions of linearization, obtaining three subsystems. We have divided the 

desired trajectory in three regions and we have chosen the middle point of 

every region as the linearization point. In Fig. 2 the selected linearization 



positions are shown. The result is three linear systems that are going to be 

controlled with standard and fractional order PID controllers using the Dif-

ferential Evolution approach, as will be explained later.  

 

 
Fig. 2: The three positions of the system linearization. Every position is 

a point of linearization and defines a linear system. 

3 Fractional order controllers 

This section presents the main features of the fractional order controllers 

and it implementation. 

3.1 A brief review 

 

The theoretical and practical interest of fractional order operators is 

nowadays well established, and its applicability to science and engineering 

can be considered as an emerging new topic. Even if they can be thought 

of as somehow ideal, they are, in fact, useful tools for both the description 

of a more complex reality and the enlargement of the practical applicabil-

ity of the common integer order operators. Among these fractional order 

operators and operations, the fractional integro-differential operators (frac-

tional calculus) are specially interesting in automatic control and robotics, 

among others. 

 



Going a step further in automatic control, (Oustaloup, 2000) studied the 

fractional order algorithms for the control of dynamic systems and demon-

strated the superior performance of the CRONE (Commande Robuste 

d'Ordre Non Entier) method over the PID controller. (Podlubny, 1999) 

proposed a generalization of the PID controller, namely the PIλDμ control-

ler, involving an integrator of order $%\lambda $ and a differentiator of 

order $\mu .$ He also demonstrated the better response of this type of con-

troller, in comparison with the classical  PID controller, when used for the 

control of fractional order systems. A frequency domain approach by using 

fractional order PID controllers has also been studied in (Monje, 2010). 

 

Fractional calculus also extends to other kinds of control strategies dif-

ferent from $PID$ ones, but in the case study presented in this paper we 

propose the use of the fractional order PIλDμ controller as a robust alterna-

tive for the control of a humanoid robot simplified model based on the tri-

ple inverted pendulum. More details will be given later. 

3.2 Implementation 

Before introducing the differential evolution method used for the tuning 

of the different controllers proposed in this paper, some considerations on 

the implementation of the fractional order PIλDμ controller have to be tak-

en into account. A very good review regarding this topic is given in 

(Monje, 2010). 

 

The generalized transfer function of this controller is given by  
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    (37) 

 

In general, when fractional order controllers have to be implemented  or 

simulations have to be performed, fractional transfer functions are  usually 

replaced by integer transfer functions with a behavior close enough  to the 

one desired, but much easier to handle. There are many different ways  of 

finding such approximations but unfortunately it is not possible to say that 

one of them is the best, because even though some of them are better  than 

others in regard to certain characteristics, the relative merits of each ap-

proximation depend on the differentiation order, on whether one is more 



interested in an accurate frequency behavior or in accurate time responses, 

on how large admissible transfer functions may be, and other factors like 

these (Monje, 2010). 

 

In this work a frequency identification method performed by the Matlab 

function invfreqs (Monje, 2010) has been used. With this method a rational 

transfer function is obtained whose frequency response fits the frequency 

response of the original irrational transfer function within a selected fre-

quency range. This method is chosen due to its accuracy in the frequency 

range of interest, which can be adjusted by selecting the number of 

poles/zeros of the rational transfer function. 

4 Differential Evolution 

Differential Evolution (DE) is a stochastic search optimization method 

based on genetic algorithms (Storn, 1997). It is widely used in SLAM 

(Moreno, 2009), multiobjective optimization (Xue, 2003), pattern recogni-

tion (Bueno, 2012) or constraint optimization (Huang, 2007). 

 

This algorithm selects a random initial population over a bounded do-

main minx  and maxx , generating N population members. Similarly to an-

other evolutionary algorithms, it perturbs the population, generating new 

members that are going to be evaluated in a fitness function.  

 

The selection and combination of new points are randomly chosen from 

three individuals. Two of the members, 1rx  and 2rx , are subtracted and 

multiplied by a weight F, and then added to another 3rx giving a trial solu-

tion: 

 0 3 1 2( )r r ru x F x x    (38) 

 

This solution $u_0$ is evaluated in the fitness function and compared 

with the rest of the vector of the same index. This process is repeated until 

a population of N has competed against the trial solution randomly gener-

ated. Once the last vector has been evaluated, the best members are select-

ed for the next iteration. 

 



The computation ends when a final condition has been achieved. Usual 

conditions are time, number of iterations or a specific value of the fitness 

function. 

 

In this paper we have used DE to optimize the values of the PID control-

ler gains 
3 3, , x

p i dk k k  and the gains and orders of the fractional order 

controller , , ,p i dk k k  and μ. 

5 Results and discussion 

This section present and discuss the results. 

5.1 Identification of pendulum parameters 

To obtain the triple inverted pendulum parameters a system identifica-

tion was performed. For this purpose we used DE optimizer, computing a 

triple pendulum's Zero Moment Point (ZMP) trajectory and comparing it 

with the real ZMP measurement of the robot feet FSR sensors (Fig. 3), 

minimizing the quadratic difference. 

 

The multibody ZMP equation in the sagital plane is 
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 (39) 

The reason why we used the ZMP to perform the identification is be-

cause ZMP is a measurement of stability, and we can obtain a real ZMP 

directly from robot sensors. This is more intuitive and gives more infor-

mation than simple joint trajectories. 

 



 
Fig. 3. ZMP trajectory of the triple inverted pendulum and ZMP of the 

real robot measured with the feet sensors. 

 

 

Our identification is based on the work of (Tang, 2008).  The results are 

shown in the Table 1. 

 

Table 1: Triple pendulum identification parameters 

 
 

Taking these parameters into account and the three operating points pre-

viously stated (Fig. 2), we obtained three linearized subsystems using (35). 

Each subsystem was controlled using an standard and a fractional order 

PID controller, whose gains 
3 3, , x

p i dk k k  and fractional orders λ and μ, 



have been obtained using DE. To change between systems, we used a gain 

scheduling strategy. 

 

The desired trajectory has been manually defined using three order 

splines and it simulates a stand up trajectory. The trajectory has been di-

vided into three regions of two seconds, corresponding to the three subsys-

tems each. In Fig. 4 the simulated trajectory is shown. 

 

 
Fig 4. Simulation of triple inverted pendulum trajectory. 

 

Furthermore, to estimate the controller robustness, we have overloaded 

the pendulum masses, adding 1 Kg to each link and comparing the new 

responses with those obtained from the nominal system.    

5.2 Comparison between classical and fractional order 
controller 

All simulations have been performed in MATLAB, using Runge-Kutta  

solver and a sampling time of 1 ms. 

 



The differential evolution algorithm produces random values of the con-

troller gains, whose are used to simulate the system in Fig. 5. The fitness 

function to minimize is the difference between the system output and the 

reference. The best member of every iteration is mutated and evaluated 

again until a final value of the fitness function is reached or a total number 

of iteration is passed. In our case, the final value is 1 and the maximum 

number of iterations is 50. 

 

 
Fig. 5. Control system. The block PID is changed for the block PIDfr 

when the fractional order control strategy is used. 

 

This is done for every subsystem with the standard PID gains and with 

the fractional order PID gains and λ and μ orders. 

 

To approximate the behavior of a fractional controller, we have used the 

frequency identification method invfreqs provided by MATLAB. The cho-

sen crossover frequency has been 0.001 rad/s and we approximated the 

behavior of the fractional controller for 4 decades.  

 

The approximation of the fractional controller is a rational expression of 

order 8. This expression is evaluated in MATLAB and substituted in the 

block PIλDμ of Fig. 5.  

 

For the sake of space, we are just presenting the parameters of the frac-

tional order PID controller for the first region, similarly obtaining the cor-

responding controllers for the other two regions, and so for the classical 

PID case.  

1

404.727 305.224 782.663

1887.738 102.147 6281.782

1097.379 13.248 417.511

pk

  
 

   
  

 



1

13129.120 13074.195 5581.229

1185.499 118.561 1321.581

1971.739 933.607 12007.290

ik

  
 

   
   

 

1

10891.500 6320.620 1687.942

3646.421 1252.162 7721.200

1025.524 943.733 1851.324

dk

 
 

  
   

 

1 10.595; 0.432     

 

The results obtained for the three regions are presented in Fig. 6, Fig. 7 

and Fig. 8, respectively.  

 

 
 

Fig. 6. System response for joint 1 for the nominal (left) and overloaded 

(right) subsystem. In blue is the desired trajectory, in green the trajectory 

with the fractional order controller and in green the trajectory with the 

standard PID. In dotted red the limits of the three linearization regions. 

 



 
Fig. 7. System response for joint 2 for the nominal (left) and overloaded 

(right) subsystem. 

 

 
Fig. 8. System response for joint 3 for the nominal (left) and overloaded 

(right) subsystem.  

 



As can be seen, the fractional order controller keeps the stability of the 

system in case a significant masses mismatch appears in the model. This 

way, we can guarantee the robustness of the control system to uncertainties 

in the model, compensating this way the effects of using for simplicity a 

reduced model of the robot for control purposes. On the contrary, the re-

sponses with the standard PID controller are unstable for some of the joins 

when the system is overloaded. 

6 Conclusions 

This paper addresses the problem of modeling and controlling a reduced 

model of a humanoid robot based on the triple inverted pendulum. A con-

trol technique that uses differential evolution and a fractional order PID 

controller is applied, obtaining very good results.  

 

The effect of mass mismatches between the real and the simplified 

model of the humanoid is compensated to a significant extent by the frac-

tional order PID controller, which ensure the robust response of the whole 

system during the whole motion when a mass increase of 1 Kg is consid-

ered in each tip.  

 

After comparing the behavior of the humanoid when performing a 

standing up movement using the standard PID controller and the fractional 

order one, it is concluded that, using differential evolution as gain optimiz-

er, both controllers track the reference satisfactorily for the nominal case. 

However, when the robot is overloaded, only the fractional order controller 

guarantee the stability of the system. We are currently working on testing 

this control strategy in the real humanoid. 
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